Surficial Geology

The Northern Portion of the Baker Island Quadrangle, Maine

Surficial Geology Map

A geologic map shows how the land surface relates to how it was shaped by past glacial, wind, and water processes. This map shows where glacial materials are found, how they were deposited, and what processes created the features. The map is useful for understanding how the land surface has changed over time and for planning future development.

Sources of Map Information
- Marine shoreline deposits - Indicate approximate boundary between adjacent map units. Expectable line sea receded.
- Marine beach ridge or strandline - Distinct strandline features. Deposited during the post-glacial marine submergence of the coast.
- Crescentic marks - Indicate approximate boundary between adjacent map units. Expectable line.
- Subtle ridge or bench feature with an abrupt steepening of slope in the down-slope direction in an area of Pleistocene marine shoreline deposits. A possible mark of a terminal moraine.
- Lobe margin - Lobe margin is grown.
- Beach ridge - Indicate approximate boundary between adjacent map units. Expectable line.

Uses of Surficial Geology Maps
- Marine beaches, east and south sides of the island (exposed to the open ocean) are made of angular blocks of rocks. On the north-west part of the island there are beaches, gravel deposits from sea levels higher than the present.
- Older ancient features include shorelines and deposits of glacial lakes or the glacial sea, now gone. Landforms as described in the map explanation. Features such as ridges and features in the unconsolidated material. It is possible to see the remnants of the glacial process on the surface.
- The land surface is made up of glacial materials, wind, and water action, and worldwide sea level is rising against glacial ice.

References

The Northern Portion of the Baker Island Quadrangle, Maine


SOURCES OF RELATED INFORMATION

For more information, please visit: http://www.maine.gov/dacf/mgs/