Landslide susceptibility in fine-grained sediments

- Slope less than 5 percent.
- Slope equal to or greater than 5 percent.

Terrain-related Risk Factors

Slope: Slope is the primary driving force for landslides and earth movements. Slope is defined as the inclined surface of the land. The steeper the slope, the larger the shear stress produced by the weight of the materials and the more susceptible the slope is to failure. For this map, a slope of 5% or greater is considered a risk factor.

Slope aspect: Slope aspect is the direction toward which the surface of the soil faces. South-facing slopes undergo more extensive freeze/thaw cycles in winter months than slopes with other aspects. Repeated freeze/thaw cycles preferentially reduce the shear strength of the shallow soil material and increase the likelihood of shallow soil slumps. Similarly, small movements may steepen the slope and lead to larger slope failures. For this map, a slope aspect facing between South 45° East and South 45° West is considered an additional risk factor.

Curvature (concave shape): Hill shape influences landslides by its effects on soil and water distribution. Concave surface topography will tend to concentrate the flow of surface water and ground water, raising ground-water pore pressures and reducing the shear strength of the soil. As a result, concave slopes are more susceptible to failure than straight slopes or convex slopes. For this map, a concave shape is considered an additional risk factor.

Local relief (slope height): As the thickness of the potential landslide block increases, the shear stress on the lower section of the block increases and the block is more susceptible to failure. As a consequence, thicker sections of surficial materials will be more susceptible to failure and possibly deeper and larger failures. For this map, local relief greater than 6 meters (approximately 20 feet) is considered an additional risk factor.

Sites of past landslides

This map can be used to identify areas with historical landslide activity and to identify areas that are susceptible to future landslide activity where additional studies should be undertaken before construction or other development is started. This is likely to be a risk due to future landslides. Ninety-one percent of mapped landslide sites in the town of Kennebunk (19 of 20 features) are located in areas shown as having a slope of 5 percent or more, and 91 percent of the mapped landslide sites are located in areas containing at least one additional geomorphic risk factor. From this, we can conclude that there is a significantly greater risk of a landslide occurring in areas containing one or more of the geomorphic risk factors than in areas that do not contain any of these risk factors.

However, no information is presently available to assess the probability of a landslide occurring within these areas. That is, if a landslide or earth movement does occur, it is very likely to be in the areas containing one or more of the geomorphic risk factors, but it is not possible at this time to predict whether a landslide or earth movement will occur.

Forty percent of the mapped landslide sites in York County are located in the glacial marine Precambrian Formation which is known for thick sections dominated by marine clay. Eighty percent of the mapped landslides show at least some involvement with glacial marine deposits of all types, although other surficial materials (such as till or alluvium) may be present. Less than 14 percent of the mapped landslides involve Holocene alluvial deposits.

Sources of information used to make this map

Terrain-related risk factors were calculated from the National Elevation Dataset 1/3 Arc Second product developed and published by the U.S. Geological Survey. The horizontal resolution of the 1/3 Arc Second dataset is approximately 10 meters. Horizontal accuracy meets the National Map Accuracy Standard for a 1:24,800 scale dataset of ± 40 feet or 12 meters. Absolute vertical accuracy of the elevation data is ± 7 meters or 1:24,000. Deviation from the geodetic vertical datum means that data is not perfectly horizontal, and that a combination of loose soil, rock, organic matter, air, and water mobilizes as a slurry that flows downslope.

Dickson, S. M., 2006, Coastal landslide hazards in the Kennebunkport quadrangle, Maine: Maine Geological Survey, Open-File Map 96-3h, scale 1:24,000.

Common Types of Landslides in Maine

- **Rotational slide**: The surface rupture is curved, usually along a roughly planar surface with little rotation or backward tilting.

Debris flow - rapid mass movement in which a combination of loose soil, rock, organic matter, air, and water mobilizes as a slurry that flows downslope.

Creep - the imperceptibly slow downslope movement of soil or rock caused by shear stress sufficient for permanent deformation, but too small to cause shear failure.

Limitations of the data

This map may be used to identify areas that are susceptible to landslide activity. Based on the risk factor analysis, if a landslide or earth movement does occur, it is very likely to be in the areas containing one or more of the geomorphic risk factors shown on this map, but it is not possible at this time to predict whether a landslide or earth movement will occur.

The landslide site mapping and risk factor analysis were done in 2008. Some mapped landslides may have occurred since the photography and digital elevation model were mapped or generated.

Neither the Department of Conservation, nor its employees or agents (1) make any warranty, either expressed or implied, for merchantability or fitness for a particular purpose, as to the accuracy or reliability of the information shown on the map; nor are they (2) liable for any damages, including consequential damages, from using the map or the inability to use the map.