Surficial Geology

The Eastern Portion of the Bartlett Island Quadrangle, Maine

By

Description

Maine Geological Survey

Open-File No. 16-16

2016

Figure 9: View shows the eastern part of Long Island in the Maine Coastal Region. Figure 10: Shoreline of Long Island is shown with waves crashing on exposed bedrock. Figure 11: Wave patterns from a nearby beach. Figure 12: Long Island beach in winter with waves crashing on exposed bedrock. Figure 13: Wave patterns from a nearby beach. Figure 14: Long Island beach in winter with waves crashing on exposed bedrock.

Sources of Related Information

References

Christian H. Halsted

The Eastern Portion of the Bartlett Island Quadrangle, Maine

Figure 9: View shows the eastern part of Long Island in the Maine Coastal Region. Figure 10: Shoreline of Long Island is shown with waves crashing on exposed bedrock. Figure 11: Wave patterns from a nearby beach. Figure 12: Long Island beach in winter with waves crashing on exposed bedrock. Figure 13: Wave patterns from a nearby beach. Figure 14: Long Island beach in winter with waves crashing on exposed bedrock.

REFERENCES


Christian H. Halsted

The Eastern Portion of the Bartlett Island Quadrangle, Maine

Figure 9: View shows the eastern part of Long Island in the Maine Coastal Region. Figure 10: Shoreline of Long Island is shown with waves crashing on exposed bedrock. Figure 11: Wave patterns from a nearby beach. Figure 12: Long Island beach in winter with waves crashing on exposed bedrock. Figure 13: Wave patterns from a nearby beach. Figure 14: Long Island beach in winter with waves crashing on exposed bedrock.


deeply sloped areas: 75-100% of the surface is bare or vegetation-covered bedrock. Where gray (6-15 ft) thick. stream channels enter more gently sloped and wider areas; typically 2 m (6 ft) or more thick. Ice flow was from left to right, grinding a gentle up-flow slope to give a streamlined shape to many hills, with their long dimension bedrock, and they are important indicators of the direction of ice meltwater streams and lakes as the ice receded. Earlier stream patterns document the history of ice movement through this area. Where gray (6-15 ft) thick. stream channels enter more gently sloped and wider areas; typically 2 m (6 ft) or more thick. Ice flow was from left to right, grinding a gentle up-flow slope to give a streamlined shape to many hills, with their long dimension bedrock, and they are important indicators of the direction of ice meltwater streams and lakes as the ice receded. Earlier stream patterns document the history of ice movement through this area.

Figure 9: View shows the eastern part of Long Island in the Maine Coastal Region. Figure 10: Shoreline of Long Island is shown with waves crashing on exposed bedrock. Figure 11: Wave patterns from a nearby beach. Figure 12: Long Island beach in winter with waves crashing on exposed bedrock. Figure 13: Wave patterns from a nearby beach. Figure 14: Long Island beach in winter with waves crashing on exposed bedrock.


deeply sloped areas: 75-100% of the surface is bare or vegetation-covered bedrock. Where gray (6-15 ft) thick. stream channels enter more gently sloped and wider areas; typically 2 m (6 ft) or more thick. Ice flow was from left to right, grinding a gentle up-flow slope to give a streamlined shape to many hills, with their long dimension bedrock, and they are important indicators of the direction of ice meltwater streams and lakes as the ice receded. Earlier stream patterns document the history of ice movement through this area.