5-1-2020

Maine Forest Service
Forest Policy and Management Division

Follow this and additional works at: https://digitalmaine.com/for_docs

Recommended Citation
https://digitalmaine.com/for_docs/245

This Text is brought to you for free and open access by the Maine Forest Service at Digital Maine. It has been accepted for inclusion in Forest Service Documents by an authorized administrator of Digital Maine. For more information, please contact statedocs@maine.gov.

Maine Department of Agriculture, Conservation and Forestry

Maine Forest Service
Forest Policy and Management Division
22 State House Station
Augusta, ME 04333

Published May 2020
Printed under Appropriation # 010 01A 5425 52
The data in this document were generated using the procedures outlined in the two volumes of the Best Management Practices (BMP) Monitoring Manual: Implementation and Effectiveness for Protection of Water Resources:

- **Field Guide** (NA–FR–02–06)
- **Desk Reference** (NA–FR–02–07)

Both documents were published by:

United States Department of Agriculture
Forest Service
Northeastern Area State and Private Forestry
11 Campus Boulevard, Suite 200
Newtown Square, PA 19073

Acknowledgements

We would to thank the many landowners who provided access to their property for data collection and the loggers and foresters who provided helpful information about harvest specifics. Thanks also the MFS Forest Policy and Management Division's District Forester field staff that collected the field data.

We would also specifically like to thank the following people for their careful review and comment of the draft report:

- **Jereme Frank** – Biometrician – Maine Forest Service, Department of Agriculture, Conservation and Forestry, Bureau of Forestry
- **Wendy Garland** – Nonpoint Source Program Coordinator - Maine Department of Environmental Protection
- **Anil Raj Kizha** - Assistant Professor of Forest Operations - University of Maine
- **Morten Moesswilde** – Field Team Leader – Maine Forest Service, Department of Agriculture, Conservation and Forestry, Bureau of Forestry
- **Pat Sirois** – Executive Director – Maine Sustainable Forestry Initiative
Executive Summary

MFS has conducted random, statewide monitoring of BMPs on timber harvesting operations since 2000. The objective of this ongoing effort is to assess the use and effectiveness of BMPs in Maine.

Landowners are required to notify the MFS before harvesting takes place. Approximately 4,100 timber harvest notifications are filed in Maine each year; samples were drawn from these notifications. This report presents an analysis of data collected on 142 timber harvesting sites over two field seasons, in roughly equal numbers, from 2018-19. MFS continues this monitoring effort as a part of regular field activities during the snow-free portions of each year and expects to generate subsequent biennial reports.

Findings in this report inform MFS on continued education and outreach efforts. As a result, the focus of future trainings may emphasize adequate installation of BMPs at crossing structures. This includes use and maintenance of adequate BMPs during installation and close out of crossing structures. Trainings should also focus on proper sizing of culverts. Although there is a continued trend of appropriate sizing of crossing structures in general, there is evidence that culverts tend to be undersized due to the prevalence of scouring that is observed among single culverts and multiple culverts. Use of multiple culverts should continue to be discouraged due to their tendency to cause sedimentation and scouring. Multiple culverts also promote shallow water depth within the crossing, inhibiting fish passage.

Key findings

- **A strong majority (78%) of sites had BMPs applied appropriately on crossings and approaches, or crossings were avoided.** Stream crossings and associated approaches represent a high-risk area for sedimentation of surface waters. MFS BMPs emphasize planning harvests to minimize the number of crossings by avoiding crossing streams whenever practicable. When stream crossings are needed, properly applying BMP principles (such as minimizing and stabilizing exposed soil, controlling water flow and protecting the integrity of the waterbody) when installing BMP practices (such as mulch and seed, slash stabilization, water diversions etc.) will minimize risk to the waterbody.

- **BMPs were applied inadequately on 9% of sites, and not applied on 12% of stream crossings and approaches.** When BMP principles and practices are not applied, the risk of damage to waterbodies greatly increases. Monitoring in Maine and elsewhere has shown that if BMPs are not applied, sediment reaches waterbodies much more frequently than when BMPs are applied.
• **Eighty-eight percent (88%) of sites evaluated for sediment input found no sediment entered a waterbody.** A major goal of BMPs is keeping sediment from reaching waterbodies. It is essential that the BMPs chosen effectively achieve this goal. In other words, the outcome is more important than the BMP practice used.

• **Ninety-six percent (96%) of sites showed no evidence of chemical spills.** Large amounts of potentially toxic chemicals, including fuel, hydraulic and lubricating oils and greases are often present at logging operations. Properly securing and storing these chemicals is an important BMP, as is being prepared with a plan and the proper equipment if a spill occurs.

• **When applied appropriately BMPs were effective at preventing sedimentation from entering waterbodies.** Sedimentation events were strongly correlated with inadequate application of BMPs, or lack of maintenance of BMPs. When BMPs were applied appropriately the risk of sediment entering a waterbody was very low. This finding is consistent with many studies from around the country.

• **Ninety-seven percent (97%) of sites had no haul road or landing in the waterbody buffer/filter strip.** Active haul roads and log landings typically have large amounts of exposed soil associated with them. BMPs call for an unscarified filter strip along waterbodies where the forest floor is kept intact and soil is not exposed. Keeping new haul roads and log landings out of these areas is an important BMP. Relocating legacy roads and landings when possible away from waterbodies is also important.

• **Ninety-four percent (94%) of sample sites had no wetland crossing.** Wetlands were either avoided or effective BMPs were used to cross. Crossing wetlands may compromise their natural hydrology if not done properly. Avoiding wetland crossings when at all possible is an important BMP.

• **Out of the 8 wetland crossings monitored, the majority had BMPs used to limit rutting to less than 6 inches deep, indicating effective use of BMPs.** Wetland crossing BMPs focus on increasing the bearing strength of the soil by techniques such as limiting operations to frozen or dry conditions and the use of corduroy, slash, timber mats or other measures.
Contents

Acknowledgements ... 1
Executive Summary .. 2
Key findings ... 2
Contents .. 4
List of Figures .. 5
List of Tables ... 6
Introduction- Maine’s BMP Monitoring Program .. 7
BMP Monitoring Protocol Background ... 8
Sample Selection, Data Collection and Analysis .. 9
1. General Information ... 12
2. Soil Stabilization, Movement and Sedimentation .. 16
 Discussion .. 17
 Sedimentation by Area of Origin .. 17
 Trace and Measurable Sediment by Area of Origin ... 17
 Discussion .. 19
3. Approaches to Water Crossing ... 19
 Discussion .. 20
 Sediment from Approaches .. 20
 Specific Cause of Sedimentation from Approaches .. 21
 Discussion .. 22
4. Crossing Structure ... 23
 Crossing Structure Specifications .. 23
 Discussion .. 25
 Soil Stabilization, Movement, and Sedimentation from the Crossing Structure 27
 Discussion .. 28
 Sedimentation from the Crossing Structure ... 28
 Activities Related to Sedimentation at the Crossing Structure 31
 Discussion .. 31
 Effectiveness of BMP Principles and Practices at Crossing Structures 32
5. Fish Passage ... 34
 Discussion .. 36
6. Haul Road or Log Landing in the Buffer/Filter Strip ... 37
 Soil Stabilization, Movement, and Sedimentation .. 37
 Discussion .. 37
7. Chemical Pollutants ... 39
 Evidence of Potential Pollutants .. 39
8. Wetland Crossings .. 41
 Rutting Depth and Sedimentation .. 42
9. Conclusions ... 43
 Continuing Education and Outreach .. 44
Appendix A: The Seven BMP Fundamentals .. 45
List of Figures

Figure 1. Depiction of possible sample unit delineation... 10
Figure 2. Five opportunities to observe soil movement at any typical stream crossing. 11
Figure 3. Locations of 2018-19 BMP inspection sites.. 12
Figure 4. Percentages of sample units by category .. 13
Figure 5. Forest ownership sizes from which samples were drawn 13
Figure 6. Harvest Systems... 14
Figure 7. Assignment of BMP Responsibility... 15
Figure 8. Logger certification program participation ... 15
Figure 9. Observations of soil stabilization, movement and sedimentation at all sample units... 16
Figure 10. Overall application of BMPs for all sample units 16
Figure 11. Origins of trance and measurable sedimentation 17
Figure 12. Trace amounts of sediment by area of origin ... 18
Figure 13. Measurable amounts of sediment by area of origin 18
Figure 14. Observations of soil stabilization, movement and sedimentation at approaches .. 20
Figure 15. Cause of soil reaching the water from the approaches 21
Figure 16. BMP implementation at approaches ... 22
Figure 17. Crossing structure types ... 23
Figure 18. Skid trail crossing structure types .. 24
Figure 19. Haul road crossing structure types .. 24
Figure 20. Observations of soil stabilization, movement and sedimentation from the crossing structure.. 27
Figure 21. Observations of soil stabilization, movement and sedimentation from the crossing structure – haul Rds. vs. skid trails 27
Figure 22. Sedimentation at the crossing structure 2005 - 2019 28
Figure 23. Structure type associated with sedimentation ... 29
Figure 24. Likelihood of structure type being associated with sedimentation 30
Figure 25. Activities related to sedimentation at crossings 31
Figure 26. BMP application when no sediment entered the waterbody from the crossing structure .. 32
Figure 27. BMP application when sedimentation occurs from the crossing structure... 32
Figure 28. BMP application at the crossing structure – haul rds. vs. skid trails 33
Figure 29. Crossing structure widths relative to stream bankfull width 34
Figure 30. Crossing structure bottom condition ... 35
Figure 31. Evidence of scouring or downcutting within 100’ of the crossing.............. 35
Figure 32. The percentage of crossings with evidence of scour by crossing type 36
Figure 33. Observations of soil stabilization, movement and sedimentation at haul roads or log landings inside the buffer/filter strip................. 37
Figure 34. Spills relating to harvest operations ... 40
Figure 35. Discarded batteries and other pollutants ... 40
Figure 36. Evidence of chemical pollutants reaching a waterbody 41
Figure 37. Wetland crossing stabilization techniques ... 42
Figure 38. Average rutting depth in wetlands ... 42
Figure 39. Evidence of sediment reaching wetlands ... 43
List of Tables
Table 1. Volume of measurable sediment observed in the water and attributable to the crossing structure (cubic feet) ... 28
Table 2. Quantities of Sedimentation by Crossing Structure Type 31
Table 3. Wetland Crossing Length from Upland to Upland .. 42
Introduction- Maine’s BMP Monitoring Program

The Maine Forest Service (MFS) has worked closely with Maine’s professional forestry and logging community for many years to develop and refine forestry Best Management Practices (BMPs) to protect water quality. MFS BMPs stress a strong understanding of water quality protection principles needed to use the “toolbox” of BMP practices effectively. MFS prefers a flexible, voluntary BMP approach over prescriptive regulation. Voluntary BMPs based on water protection principles allow loggers and foresters to select efficient practices that result in the desired outcome; protection of water quality. For an outcome-based BMP system to be successful, a strong training program must be in place as well as a monitoring system to ensure that BMPs are working on a statewide basis. Over 1,100 loggers, foresters and landowners have attended Maine Forest Service and partner water quality trainings over the last two years. MFS’s key partner in training development and delivery is Maine’s Sustainable Forestry Initiative State Implementation Committee’s Education Committee. The Certified Logging Professional Program, Qualified Logging Professional Program, Professional Logging Contractors of Maine, and the Northeast Master Logger Certification Program have also been instrumental in training program delivery. These public-private partnerships have advanced Maine’s BMP educational efforts far beyond what they would be otherwise.

Forestry operations generally do not have permitting requirements under the Clean Water Act due to a “silvicultural exemption” which allows the use of voluntary BMPs to help control nonpoint source (NPS) pollution. The MFS is statutorily responsible for the development of forestry BMPs in Maine (38 M.R.S. §410-J) and has published a BMP manual titled Best Management Practices for Forestry: Protecting Maine’s Water Quality. As part of this mandate, MFS also monitors and reports on the use and effectiveness of BMPs on harvest operations across the state.

Data in this report were collected and analyzed using the “Best Management Practices Implementation Monitoring Protocol,” an original project of the Northeastern Area Association of State Foresters’ (NAASF) Water Resources Committee. This protocol assesses the overall rate of appropriate application, as well as the effectiveness of the suite of BMPs used in preventing erosion and sedimentation, rather than monitoring the simple installation of prescribed, individual practices, which do not necessarily guarantee success in protecting water quality.

Assessing the overall effectiveness of a suite of BMPs rather than monitoring the installation of prescribed individual practices allows MFS to assess the effectiveness of BMPs in protecting water quality. For example, simply finding that water bars were installed does not indicate whether they were effective in directing water into filter areas and keeping sediment out of a waterbody. This approach supports MFS’s desire to pursue outcome-based forest policy, a science-based voluntary process that achieves mutually beneficial economic, environmental, and social outcomes in the state’s forests. Outcome-based policies are an alternative to prescriptive regulation.

They demonstrate measurable progress towards achieving statewide sustainability goals and allow landowners to use creativity and flexibility to achieve objectives, while providing for the conservation of public trust resources and the public values of forests. MFS uses BMP monitoring to focus educational outreach efforts to loggers, foresters, and landowners and identify trends for targeting technical assistance.

As BMPs are voluntary measures for silvicultural practices to protect water quality, MFS does not use BMP monitoring to assess compliance with nor enforce laws and rules. When monitoring staff observe concerns or minor issues during BMP monitoring, MFS works closely with the landowner in a non-regulatory manner to seek corrective measures. Education and intervention usually result in quick corrective action, thereby avoiding lengthy regulatory processes that may prolong erosion problems and result in greater negative environmental impacts.

BMP Monitoring Protocol Background

MFS in conjunction with FORAT (FORestry Advisory Team), a broad group of forest stakeholders, developed and field tested a methodology for monitoring use and effectiveness of BMPs in Maine in 2000. Recognizing deficiencies in the original methodology, Roger Ryder and Tim Post of the Maine Forest Service developed a new approach emphasizing BMP principles and effectiveness based on observable evidence in 2003-2004 in collaboration with David Welsch and Albert Todd of the U.S. Forest Service, Northeastern Area State and Private Forestry (NA S&PF). Recognizing that the new protocol and question sequence were widely applicable to BMPs in timber harvesting, The NA S&PF proposed the method to the Northeastern Area Association of State Foresters- Water Resources Committee (NAASF–WRC) and the U.S. Environmental Protection Agency (EPA) for development as a potential regional protocol. The regional BMP protocol project was a cooperative effort of the Forest Service, U.S. Department of Agriculture (USDA), and the NAASF–WRC. The BMP monitoring protocol manual was released in 2007. The project was funded by grants from the USDA Forest Service and the EPA.
State forestry agencies from Delaware, Indiana, Maine, Maryland, Massachusetts, New Hampshire, New York, Ohio, Pennsylvania, Vermont, Virginia, West Virginia, and Wisconsin; the New York City Watershed Agricultural Council Forestry Program; and the U.S. Forest Service Northern Research Station and NA S&PF collaborated in the development and testing of the BMP protocol, and multiple states continue to use this methodology.

Sample Selection, Data Collection and Analysis

Landowners are required to notify the Maine Forest Service before starting a commercial timber harvest. Sample locations were randomly selected from Forest Operations Notifications that indicated the harvest was taking place within 250 feet of a waterbody. Of approximately 4,100 notifications filed, 142 sites were monitored. The sample was stratified geographically by forest protection region (Southern, Central and Northern Regions) and by ownership size.

The information for this data summary was compiled from 142 sample units using measurements and observations from commercial harvest sites. The data collection procedure is described in the U.S. Forest Service publication *Best Management Practices (BMP) Monitoring Manual—Field Guide: Implementation and Effectiveness for Protection of Water Resources* (NA–FR–02–06), which includes the question set and instructions for making and recording the observations. Diagrams and definitions are also included.

Within a given harvest, MFS personnel selected sample units by identifying recently harvested areas, especially where roads and trails used in the harvest crossed surface waterbodies, or were otherwise adjacent to surface water, as these were considered high risk areas in terms of sedimentation. Sample units were delineated by harvesting boundaries, ownership boundaries, and by the crossing of natural perennial and intermittent streams or non-forested wetlands. The crossings and their approaches were inspected for BMP implementation and effectiveness and the data were recorded for each sample unit. Field delineation of sample units and the features to be included within them are shown in figure 1.
There are 5 opportunities to observe the occurrence of soil movement, sedimentation, or stabilization for each sample unit. They are located at:

1. Approach Area A–Outside the Buffer/Filter Strip,
2. Approach Area A–Inside the Buffer/Filter Strip,
3. The Crossing Structure,
4. Approach Area B–Inside the Buffer/Filter Strip, and
5. Approach Area B–Outside the Buffer/Filter Strip.

The protocol defines buffer or filter strip as “A state designated width of land adjacent to surface water bodies where logging activities affecting shade, basal area or erosion and sedimentation are regulated to protect waterbodies.” In Maine, regulatory buffers range from 25’ to 250’or wider depending on the type of waterbody and regulatory jurisdiction.
Proportions are based on the total number of opportunities to make observations about soil conditions. Sample units that did not have a crossing are not included, however those crossings that were avoided through good harvest planning are considered in figure 10. This is intended to give an overall picture of harvest impacts on water quality, since many harvests were planned such that they never interact with a waterbody. Subsequent sections (Approaches, Crossing Structure) give a more detailed analysis of sample units that just had crossings.

Figure 2. Diagram showing five opportunities to observe soil movement at any typical haul road or skid trail stream crossing.

Overview of Soil Movement and BMP Application

For the 142 new sample units, 98 had water crossings. Given the 5 opportunities to observe the occurrence of soil stabilization, movement or sedimentation for each sample unit, there are a total of 490 observations made at the 98 sample units containing water crossings. Eight (8) sites were found to have avoided crossings through good harvest planning.
1. General Information

This report presents the results of data gathered for the BMP protocol project on new sample units for the State of ME.

- A total of 142 new sample units were sampled.

Figure 3. Locations of 2018-19 BMP inspection sites.
Ownership Category and Size

Figure 4. Percentages of sample units by category (n=142).

Figure 5. Forest ownership sizes from which samples were drawn (n=142).
Ground based - dragged harvesting systems usually require the use of cable or grapple skidders where trees are harvested individually or pre-bunched mechanically and dragged to the landing for further processing, sorting, or loading for off-site transport. When ground conditions are susceptible to disturbance, such as during unfrozen conditions, harvests that are primarily ground based - dragged often result in greater amounts of soil exposure. Ground based - carried harvesting systems may result in less exposed soil by elevating the load off of the ground and hence can reduce environmental risk. Trees are typically cut to length in the woods and then carried or “forwarded” to the landing for sorting or loading for off-site transport. However, rutting can occur with either system, depending on soil conditions, size of the load, ground pressure of the equipment and other factors. Rutting not only exposes mineral soil but also provides a conveyance for water movement to become concentrated, and thereby significantly increases risk of erosion. Although common in western mountain states, Cable system - dragged or suspended systems and aerial harvesting systems are extremely rare in Maine.

When used properly, carried wood systems (e.g. the forwarder seen on the right) can result in less soil disturbance vs. dragged wood systems (e.g. the cable skidder seen on the left). Regardless of the type of system used, operator skill and training together with proper planning are critical to limiting ground disturbance, rutting, & associated risk of erosion.
The Maine Forest Service recommends identifying who is responsible for BMP implementation within a written timber sale agreement that clearly explains landowner, logger, and forester expectations. Logger program participation is provided to describe the sample population, however, as of the date of this report, no analyses have been done to determine if they have any bearing on BMP use and effectiveness.
2. Soil Movement, Sedimentation, and Stabilization

Figure 9. Percentages are based on the total number of opportunities to observe soil conditions in the protocol (n=490).

Figure 10. Overall application of BMPs for all sample units, including crossings that were avoided due to good harvest planning (n=498).
Discussion

From the soil conditions observed, 12% showed either trace or measurable amounts of sediment reached the waterbody. BMPs were applied appropriately on 76% of sites and not applied at 13% of sites. Eight (8) crossings were found to have been avoided through good harvest planning. Avoiding a crossing, when operationally practicable, is always preferred over installing a crossing that will need BMPs to control erosion and sedimentation. Good harvest planning is considered a valuable BMP, bringing the total percentage of sites that were found to have applied appropriate BMP practices to 78%.

Sedimentation by Area of Origin

There are 59 observations of sediment reaching the surface water body or deposited within bankfull channel width of the water feature.

![Origin of Sediment](image)

Trace and Measurable Sediment by Area of Origin

The following charts compare observations of trace amounts of sediment by area of origin to observations of measurable amounts of sediment by area of origin.

Of the 59 occurrences of sedimentation, 23 observations were trace amounts and 36 observations were measurable amounts of sediment reaching the surface water body or deposited within bankfull channel width of the water feature.
Figure 12. Percentages are based on the total number of opportunities to observe soil conditions (n=23).

Figure 13. Percentages are based on the total number of opportunities to observe soil conditions (n=36).
Discussion

Measurable sediment was most likely to reach the waterbody from inside the buffer/filter strip and from the crossing structure. This was expected as these were the areas closest to the waterbody. Sediment also reached waterbodies from the approaches outside of the filter strip on some sites. This highlights the importance of extending BMPs, such as water diversion structures and/or erosion control material, far enough up the slope to be able to handle anticipated runoff from areas beyond the filter area. It is also critical to have a plan for installing additional BMPs in the approaches if the initial ones are not adequate.

The amount of exposed soil is directly correlated to water quality risk associated with timber harvesting. MFS recommends minimizing exposed mineral soil adjacent to water bodies and stabilizing immediately if it occurs. MFS’s *Best Management Practices for Forestry: Protecting Maine’s Water Quality* provides recommended filter area widths adjusted for percent slope and distance to the waterbody.

3. Approaches to Water Crossing

There are 4 opportunities to observe the occurrence of soil movement, sedimentation, or stabilization from the approaches to a surface water crossing. They are at Approach Area A–Outside the Buffer/Filter Strip, Approach Area A–Inside the Buffer/Filter Strip, Approach Area B–Inside the Buffer/Filter Strip, and Approach Area B–Outside the Buffer/Filter Strip. Proportions are based on the total number of opportunities to make observations about soil conditions at the approaches.
From the 142 new sample units, there were 98 crossings evaluated. With 4 opportunities to observe soil movement in the approaches, there were 392 opportunities to observe soil conditions at approaches.

Figure 14. Percentages are based on the total number of opportunities to observe soil conditions at the approaches (n=392).

Discussion

Sediment reached the waterbody from the approaches in 9% of observations. In 19% of cases, soil moved but did not reach the waterbody. BMPs are not designed to eliminate all soil movement, rather reduce it to levels that the BMP system can manage without it impacting the waterbody.

Sediment from the Approaches

There are 38 observations of sedimentation reaching the surface waterbody or deposited within bankfull channel width of the water feature from the approaches, including 17 observations of trace amounts of sedimentation and 21 observations of measurable amounts.
Specific Cause of Sedimentation from the Approaches

Figure 15. Cause of soil reaching the water from the approaches (n=38).

BMP maintenance refers to reshaping or reinforcing installed BMPs to compensate for wear from use, erosion or in anticipation of seasonal shutdown or extreme weather events. Inadequate installation of additional BMPs or inadequate BMP maintenance are the primary causes of sediment reaching the waterbody from the approaches (Figure 15). This finding is consistent with previous years and should continue to be emphasized in trainings and workshops.
Discussion

Sediment was kept from reaching the waterbody from the approaches in 90% of cases where crossings were present (Figure 14). When soil did reach the waterbody it was most likely to do so when BMPs were either applied inadequately, not maintained or not applied.

There are four equally important phases of BMP implementation;

1) **Plan ahead** - avoid water crossings, locate access roads, landings and trails properly, and time operations appropriately;

2) **Build it right** - adequately apply initial BMP installations;

3) **Maintain it** - monitor, repair and add additional BMPs as necessary during the active portion of the harvest; and

4) **Close it out properly** - identify long-term maintenance and monitoring needs, successfully establish soil stabilization, and anticipate activities unrelated to timber harvesting that may degrade final stabilization efforts.
4. Crossing Structure

There was only one opportunity to observe the occurrence of soil stabilization, movement or sedimentation from the crossing structure at each sample unit. Data reported in this section contains information only from sites that had surface water crossings.

Crossing Structure Specifications

A total of 142 new sample units were sampled.

- 98 sample units have surface water crossings.

![Crossing Structure Types](image)

Figure 17. Percentages are based on the total possible number of crossing structures (n=98).

Structure Type by Road Type

- There were 33 sample units with a skid trail at the water crossing and 65 sample units with a haul road at the water crossing.

The following charts compare crossing structure types by road type at the water crossing.
Figure 18. Percentages are based on the total possible number of crossing structures (n=33).

Figure 19. Percentages are based on the total possible number of crossing structures (n=65).
Discussion

Ninety-eight (98) crossings were identified as either haul roads or skid trails; 65 haul roads and 33 skid trails. A haul road may be defined as forest access system designed to transport harvested forest products to a location or facility for resale, sorting or processing into value added forest products. Skid trails are primarily travel routes to bring trees that have been harvested to a concentration point, directly associated with the forest operation notification, for either further preparation for transport on a haul road or public transportation route. In this context, “skid trails” include nonpermanent trails used by other yarding equipment, including tractors and forwarders. Haul road stream crossings were evaluated if they were directly associated with the sample unit. Haul road crossings associated with multiple harvests or large amounts of acreage not directly associated with harvest were not evaluated.

Skid trails were much more likely to use temporary crossing measures (79%), especially pole/brush fords and other structures removed at the time of monitoring. Bridges accounted for 6% of skid trail crossings, though monitoring did not distinguish between temporary and permanent bridges. Temporary skidder bridges are an effective crossing method increasingly in use, but do not yet represent the majority of skidder crossings.

Haul roads were more frequently permanent crossings, using conventional structures such as bridges or culverts. Seven (7) crossings were identified as temporary haul road crossings that had been removed.

Haul Road Skid Trail
Water Body Type Associated with Structure Type

➢ There were 79 crossings associated with a perennial water feature, 14 crossings associated with an intermittent water feature and, 5 crossings associated with an ephemeral water feature.

Permanent structures must be designed and installed to meet or exceed minimum standards and BMP recommended guidelines. Proper installation extends the useful life of the crossing structure thus reducing maintenance and unnecessary replacement costs due to premature failure.

When installing permanent crossings:

- Stabilize shoulder
- Extend 1’ beyond road fill
- Compacted backfill at depth of 1’ or ½ diameter of culvert
- Use geotextile to prevent undermining
- Armor inlet and outlet
- Inlet and outlet at or below stream bed

For the 142 new sample units, there are 98 opportunities to observe soil conditions at the crossing structure.
Soil Stabilization, Movement, and Sedimentation at the Crossing Structure

Figure 20. Percentages are based on the total number of opportunities to make observations about soil conditions at the crossing structure (n=98).

Figure 21. Percentages are based on the total number of opportunities to make observations about soil conditions at the crossing structure on haul roads and skid trails.
Discussion

Sediment entry to the waterbody occurred at 21% of crossings. This is lower than an average of 35% reported between 2016 and 2017. Six percent (6%) of all observations show trace sedimentation into the waterbody originating from the crossing structure; a decrease from an average of 15% reported between 2016 and 2017. When separating haul road crossings from skid trail crossings, we see that skid trail crossings are more likely to have trace sedimentation but just as likely to have measurable sedimentation as haul roads (Figure 21).

Sedimentation from the Crossing Structure

There are 21 observations of sedimentation reaching the surface water body or deposited within bankfull channel width of the water feature from the crossing structure, including 6 observations of trace amounts of sediment and 15 observations of measurable amounts. There are 71 observations of stable soils at the crossing structure.

Table 1. Volume of measurable sediment observed in the water and attributable to the crossing structure (cubic feet).

<table>
<thead>
<tr>
<th>Sediment evident in water body</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td>16</td>
</tr>
<tr>
<td>Median</td>
<td>3</td>
</tr>
<tr>
<td>Maximum</td>
<td>200</td>
</tr>
</tbody>
</table>

Figure 22. Percentages are based on the total number of crossing structures for each monitoring Period.
Discussion

Sedimentation originating from the crossing structure has been identified as a problem area in previous reports. In response to this issue, MFS and its partners including Maine SFI, the Certified Professional Logging Program and others have provided targeted water quality trainings to over 1,100 foresters, land owners and logging professionals over just the last two years. MFS also continues to loan portable skidder bridges available to loggers across the state.

Structure Type Associated with Sedimentation

![Figure 23. Structure type associated with sedimentation (n=21).](image)

Likelihood of Structure Type Being Associated with Observations of Trace Sediment or Measurable Sediment

When measurable sedimentation was observed at the crossing structure, the structure type was most often a single culvert. However this does not indicate the relative risk of sedimentation occurring since single culverts were also the most commonly evaluated structure. To assess this risk, each structure type was analyzed separately to see how often sedimentation occurred for that type. Note that the monitoring methodology does not address sedimentation events/amounts that are not observable at the time of monitoring.
The likelihood of a structure to contribute to sedimentation is directly related to the occurrence of the structure during our monitoring efforts (Figure 22). For instance, multiple culverts were observed only 7% of the time. However, measurable amounts of sediment were reported during this uncommon occurrence, resulting in a high likelihood of this structure type being associated with sedimentation. Figure 22 suggests that using multiple culverts, or bridge or box culverts with open tops to cross streams is less effective than other methods at preventing sedimentation. Please refer to Figure 17 to view the occurrence of each structure.

Elevated crossing structures, located above the lowest point in the road profile, divert storm flow into adjacent filter areas. By elevating the approaches inside the buffer/filter strip, storm water can be more easily diverted away from the crossing structure. Crossings located at the lowest point of the road profile can fail prematurely from side embankment erosion immediately adjacent to the structure.
Activities Related to Sedimentation at the Crossing Structure

![Activities Related to Sedimentation](image)

Figure 25. Activities related to sedimentation at crossings (n=21).

Table 2. Quantities of sedimentation by crossing structure type.

<table>
<thead>
<tr>
<th>Sediment Volumes (cubic feet)</th>
<th>Average</th>
<th>Median</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unimproved ford (n=1)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Improved/constructed ford</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Pole/brush ford (n=1)</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Single culvert (n=6)</td>
<td>5</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>Multiple culvert (n=2)</td>
<td>6</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>Bridge/box culvert, closed top (n=1)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Bridge/box culvert, open top (n=1)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Structure removed (n=3)</td>
<td>68</td>
<td>4</td>
<td>200</td>
</tr>
<tr>
<td>Unknown/other</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

N/A values indicate that no volume measurements were recorded.

Discussion

BMPs are designed to be reasonable measures to minimize the amount of sedimentation that occurs. Incorrect installation or closeout of crossings were the most common causes of sediment entering the waterbody from the crossing structure. It is very difficult to install or remove a crossing without some level of sedimentation occurring. A small, one-time input of sediment from a crossing removal or installation is often of less biological importance than ongoing, chronic sediment inputs. **Use of stabilization BMPs after removal or installation are critical to ensure that chronic sedimentation inputs are avoided.**
Effectiveness of BMP Principles and Practices at Crossing Structures

Figure 26. BMP application when no sediment entered the waterbody from the crossing structure (n=77).

Figure 27. BMP application when sediment (both trace and measurable) originating from the crossing structure entered the waterbody (n=21).
Figure 28. Percentages are based on the total number of crossing structures observed on haul roads and skid trails.

Discussion

When a crossing was present, 21% of all observations showed soil movement into the waterbody originating from the crossing structure (Figure 20). Comparing BMP application when sediment does not enter the water (Figure 24) to BMP application when sediment does enter the water (Figure 25) gives a measure of how effective BMPs are. For example, if a high percentage of sites where BMPs were found to have been applied appropriately had sediment enter the water, the BMPs would be judged to be largely ineffective. On the contrary, the data here show that in the vast majority of cases when BMPs practices were applied appropriately or planning was effective (a valid BMP principle) sediment did not enter the water (Figure 24). On the other hand when sediment reached a waterbody it was due most often to BMPs being inadequately applied, not maintained or not applied at all (Figure 25). Inadequate application of BMPs and no BMPs led to the largest number of sedimentation events. **Being sure that BMPs are installed and installed correctly to achieve the intended outcome appears to be areas to focus on in future trainings.** This illustrates that it is not just sufficient to install a BMP; but be installed adequately and well maintained to achieve its intended outcome.
5. Fish Passage

Foresters and loggers discuss the effects of crossing installation using the Sustainable Forestry Initiative (SFI) stream table model during a Maine Forest Service – Maine SFI fish passage training in Whitneyville.

Figure 29. Crossing structure widths relative to stream bankfull width. Data includes remnant structure width for structures that have been removed prior to the monitoring field visit.
Figure 30. Crossing structure bottom condition for crossings where fish or macroinvertebrates were present, and the structure was to be in place for more than 3 months (n=36).

Figure 31. Evidence of scouring or downcutting within 100’ of the crossing (n=98).
Discussion

Improving the performance of crossings to permit fish passage has been a major focus of training over the past eight years. Training is based on a set of four principles that when incorporated into crossing design should permit fish passage under most conditions: 1) Span the stream; 2) Set the crossing at the right elevation; 3) Slope and skew of the crossing matches that of the stream; and 4) Substrate is maintained throughout the crossing structure. Since 2005 there has been a mostly positive trend in the percentage of crossings that are equal to or greater than bankfull width (i.e. spanning the stream) (Figure 26). This is particularly important for haul roads where the crossings are more often permanent, rather than temporary like on skid trails, because a poorly installed permanent crossing can have long lasting impacts. Monitoring during 2018-19 found that 68% of the crossings on haul roads spanned the stream, a significant increase of 11% from the previous 2 years.

It was found that 8% of the 36 stream crossing structures where fish or macroinvertebrates were present and the structure was to be in place for more than 3 months had perched outlets, indicating a problem with the elevation of the installation and/or under sizing of the crossing structure (Figure 27). Twenty-four percent (24%) of crossings had scour within 100 feet downstream of the crossing (Figure 28). Scour can result from flow accelerating through an undersized crossing and eroding the stream bed downstream. Multiple culverts and single culverts were the most common structure types to exhibit scour, whereas temporary structures such as constructed, pole or bush fords were least likely to have scour associated with them (Figure 29).
6. Haul Road or Log Landing in the Buffer/Filter Strip

There is one opportunity to observe the occurrence of soil movement, sedimentation, or stabilization from the haul road or log landing inside the buffer/filter strip. **Proportions are based on the total number of opportunities to make observations about soil conditions at the haul road or log landing inside the buffer/filter strip.**

For the 142 new sample units, there are 142 opportunities to observe soil conditions at the haul road or log landing inside the buffer/filter strip.

- Five sample units have a haul road or log landing located within the buffer/filter strip.

Soil Stabilization, Movement, and Sedimentation

![Observations of Soil Stabilization, Movement and Sedimentation from the Haul Road or Log Landing (HRLL) in the Buffer](image)

Figure 33. Proportions are based on the total number of opportunities to make observations of soil conditions at haul roads or log landings inside the buffer/filter strip. Sites with no surface water present were removed from this analysis (n=142).

Discussion

Areas of prolonged exposed soil exposure during a given timber harvest are typically located on haul roads and landings. These locations pose the greatest risk to adjacent water resources from soil movement and potential chemical contamination from fuel oil and maintenance fluid use and storage. Locating haul roads and landings outside the buffer filter strip, significantly reduces environmental risk and BMP implementation costs.
At timber harvests monitored, 97% did not have landings or haul roads within the buffer. New construction typically avoids placing these forest access systems within these sensitive areas due to risk to water quality and regulatory buffer size. Practitioners should routinely scrutinize appropriateness of reuse when accessing historical haul roads, yards and skid trails to regain access to areas that have not been harvested in recent years. It is also critically important that BMPs on legacy roads located in buffers be maintained to ensure they continue to function as designed.

As with other findings, analysis shows when BMPs are applied, negative impacts to forested water resources are greatly reduced. Locating haul roads and landings outside the buffer during the pre-harvest planning is an effective BMP commonly implemented by Maine forest practitioners.

Selecting haul road and landing locations carefully can minimize risk to sensitive areas.
7. Chemical Pollutants

142 new sample units were sampled.

Evidence of Potential Pollutants

- **Five** sample units had evidence of lubricant, fuel, hydraulic fluid, and/or anti-freeze spillage resulting from harvest operations.

- **Three** sample units had evidence of discarded batteries and/or other potential pollutant containers present.

- **None of the** sample units had evidence of chemical spills as well as discarded batteries and/or other potential pollutant containers present.
Figure 34. Spills relating to harvest operations (n=142).

Figure 35. Discarded batteries and other pollutants (n=142).
Discussion

Forest practitioners should take great care handling and disposing fuel oil, ant-freeze, hydraulic fluid, and batteries. These common items are considered hazardous when not used and stored properly. The low occurrence of chemical pollution recorded shows that this BMP is taken seriously.

Hazardous Materials BMP Practices

- Use appropriate containers for collecting and storing oils, fuels, coolants, or hazardous wastes
- Maintain and repair all equipment outside filter areas
- Have spill kits or other absorbent materials for mopping up spills readily available
- If a spill occurs keep it from flowing off the yard and into surface waters
- Know state agency phone numbers to call in case of an emergency
- Collect trash and dispose of it properly

8. Wetland Crossings

Out of the 142 new sample units, 98 had surface water crossings.

- 8 of them were wetland crossings.
Stabilization Techniques

<table>
<thead>
<tr>
<th>Technique</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frozen condition operations</td>
<td>0%</td>
</tr>
<tr>
<td>Dry condition operation</td>
<td>1%</td>
</tr>
<tr>
<td>Corduroy of slash and tops</td>
<td>5%</td>
</tr>
<tr>
<td>Poles average diameter greater than 10 inches</td>
<td>0%</td>
</tr>
<tr>
<td>Bridge/mats</td>
<td>0%</td>
</tr>
<tr>
<td>Multiple methods</td>
<td>0%</td>
</tr>
<tr>
<td>Other</td>
<td>0%</td>
</tr>
<tr>
<td>No wetland crossing</td>
<td>94%</td>
</tr>
</tbody>
</table>

Figure 37. Wetland crossing stabilization techniques (n=142).

Table 3. Wetland crossing length from upland edge to upland edge.

<table>
<thead>
<tr>
<th>Relative Length of Wetland Crossing</th>
<th>Length in Feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td>259</td>
</tr>
<tr>
<td>Medium</td>
<td>178</td>
</tr>
<tr>
<td>Maximum</td>
<td>999</td>
</tr>
</tbody>
</table>

Rutting Depth and Sedimentation

Figure 38. Average rutting depth in wetlands (n=142).
Figure 39. Evidence of sediment reaching wetlands (n=142).

Discussion

BMPs recommend avoiding wetland crossings whenever possible. Wetland crossings surveyed may include forested or non-forested wetlands, however these were only surveyed when stream crossings were not present. Forested wetlands are often managed for timber in Maine. When wetlands do need to be crossed, adequate cross drainage must be installed so water flow is not inhibited. On skid trails BMPs are designed to minimize rutting by increasing the bearing capacity of the inherently weak wetland soils. The most common BMP used was corduroy of slash and tops. Ruts in wetlands can interfere with the natural hydrology of these systems. Most of the wetland crossings monitored had ruts less than 6” deep, with some being between 6 and 12 inches deep. No wetlands monitored had ruts deeper than 12 inches.

9. Conclusions

The creation of the Northeast Regional Forestry BMP protocol and the effort of the MFS and its partners to collect data in a consistent manner on an ongoing basis, allows us to quantify trends in BMP performance. Previous BMP monitoring efforts tended to occur in a periodic fashion and often used different protocols making direct comparisons difficult. The Northeast Regional Forestry BMP Protocol allows an objective assessment of the continual improvement process.

The 2018-19 BMP monitoring results are generally consistent with the past few years and continue to show a general acceptance of the use of effective BMPs by the state’s forestry and logging communities. In contrast to the 2016-17 report, there was a
decrease in the percentage of crossing structures associated with both trace and measurable sedimentation, from 15 and 20% during the 2016-17 monitoring period respectively, to 6 and 15% during this monitoring period respectively. Between 2005 and 2019 the average percentage of crossing structures associated with trace and measurable sedimentation is 10 and 20% respectively. Inadequate application of BMPs was the most prevalent BMP deficiency when sedimentation originated from the crossing structure between 2005 and 2017. This BMP deficiency is reported at 19% during this monitoring period, a significant decrease from 47% reported for the 2016-17 monitoring period. The most common BMP deficiencies when sedimentation originated from the crossing structure during this monitoring period are “applied appropriately/not maintained” and “not applied.” The percentages of crossing structures with these BMP deficiencies are both 33%.

Sixty-eight percent (68%) of observations find that crossing structure width on haul roads are greater than or equal to the bankfull width of the stream channel. This is an increase from 57% reported in 2015-16 and continues an upward trend since 2005. Sixty-seven percent (67%) of observations find that the crossing structure width on skid trail crossings are greater than or equal to the bankfull width of the stream channel. However, this is a decrease from 78% reported in 2015-16.

As has been well documented by previous monitoring reports and numerous studies from around the country, when BMPs are applied they work to achieve the objective of protecting water resources. Conversely, when not applied or applied inadequately the risk of detrimental impacts greatly increases. This reinforces the conclusion that continued monitoring, education, and training are key to sustaining the progress that has been made with forestry BMPs and will allow Maine’s forestry community to continually improve in the future.

Continuing Education and Outreach

Being sure that BMPs are installed and installed correctly at crossing structures to achieve the intended outcome appears to be areas to focus on in future trainings. This includes use and maintenance of adequate BMPs during installation and close out of crossing structures. Trainings should also focus on proper sizing of culverts. Although there is a continued trend of appropriate sizing of crossing structures in general, there is evidence that culverts tend to be undersized due to the prevalence of scouring that is observed among single culverts and multiple culverts. Use of multiple culverts should continue to be discouraged due to their tendency to cause sedimentation and scouring. Multiple culverts also promote shallow water depth within the crossing, inhibiting fish passage.
Appendix A

The Seven BMP Fundamentals

Most BMP techniques are based on a few basic principles. This section provides an overview of these fundamental BMPs and how they protect water quality. Understanding these principles will enable you to select or adapt the BMPs that are the most appropriate and effective. Think of these principles as goals. Any single practice or combination of practices that effectively achieves one or more of these key goals could be considered an appropriate BMP.

1. DEFINE OBJECTIVES AND RESPONSIBILITIES

• Determine the harvest objectives with the landowner, forester, and logger. The first step in planning, prior to beginning work, is to communicate with everyone involved what the harvest objectives are. Discuss what’s going to be cut, where, and the desired condition of the remaining forest.

• Decide who is responsible for BMPs. You will want to agree in advance (and in a written contract) who is responsible for implementing the BMPs, including deciding when to operate, locating streams, laying out the operation, and planning and maintaining the BMPs.

• Find out what legal requirements apply to waterbodies in the harvest area. The basic legal requirement in Maine is to keep pollution—including mud, silt, rock, soil, brush, or chemicals—out of the water. When working near waterbodies, find out what town, state, or federal standards apply, and if permits are needed.

2. PRE-HARVEST PLANNING

Pre-harvest planning is good business practice and avoids many problems. Planning will help reduce costs, make the job more efficient, protect roads and trails that will stay in place after the job, leave the job looking better, and protect water quality.

• Determine the harvest area limits and property boundaries on the ground. Know whose responsibility it is to identify the property boundaries correctly. While not essential to protecting water quality, locating property boundaries is common sense and good planning. There may be survey pins, blazes, wire fences, or stone walls that mark boundaries or property corners. Forest type maps, soil or topographic maps, or aerial photos help, too.

• Identify streams, lakes or ponds, wetlands, and other features on maps and on the ground. Maps and aerial photographs can help identify features like waterbodies, steep slopes, or poorly drained soils. Walking the property to locate important features on the ground is essential. If possible, do your planning on bare ground in wet seasons when surface water is visible.

• Identify the areas where you need BMPs. Forest harvesting BMPs are most critical in and immediately next to waterbodies including intermittent and perennial streams, lakes or ponds, wetlands and coastal areas—wherever direct impacts to surface water may occur. You may also need to use BMPs in other areas of the watershed where flowing water could be substantially altered or carry sediment into these waterbodies.

• Lay out the harvest operation on the ground. Harvest planning includes determining where operational features such as roads, stream crossings, landings, cut-and-fill areas, main skid trails, and particular BMPs will be needed. While on-site, make sure everyone involved in the harvest operation is aware of the layout—especially roads, skid trails, and filter areas next to waterbodies.

• Choose BMPs that are appropriate to the site conditions. Most sedimentation occurs during short periods of heavy rain or snowmelt. How much rain falls during a storm, how much water streams carry, how stable the soils are, and what type of vegetation is present are all conditions that vary. BMPs that are sited, designed, and installed to anticipate adverse conditions work best.

• Decide on BMPs for the entire harvest area and for closeout before beginning work. BMP systems need not be complicated, but they require planning across the entire harvest area and over the entire duration of the operation, including closeout. Applying BMPs in one location can sometimes solve problems elsewhere on the site, or prevent problems after the operation is complete. When you understand the natural drainage system in the watershed, often you can use a combination of simple BMPs that are more effective—and cheaper—than more complex or expensive techniques.
• **Consider the needs of future operations on the same property.** Will roads, trails and landings be used again in five years, 15 years, or longer? Are there other areas of the property that can be accessed using the same roads? If you need to access the lot in the future, plan roads and trails accordingly. Otherwise, consider restricting vehicle access after the harvest. Because of the possibility of extreme weather conditions, it is important to design and close out roads properly. Identify which structures—such as culverts—will be left in place, and which will be removed. Considering the future can avoid problems and costly solutions.

3. **ANTICIPATE SITE CONDITIONS**

• **Time operations appropriately.** Harvesting under frozen, snow-covered, or dry conditions can minimize the need for additional BMPs. At the same time, a range of BMPs that are appropriately chosen, installed, and maintained can extend the harvest season. Use extra caution during fall and spring when streams are high and the ground is typically wetter—you may need to use additional BMPs to control the larger volume of water.

• **Determine whether previous operations in the harvest area created conditions that are impacting—or could impact—water quality.** Old roads, log landings, and skid trails can be reused or upgraded. However, in some situations, avoiding or retiring them is a better choice. Using old roads, landings, and trails may be cheaper in the short run, but may be more costly to fix or maintain later. Pre-existing conditions may also influence your choice of BMPs.

• **Plan to monitor, maintain, and adjust BMPs as needed, especially to deal with seasonal or weather-related changes.** After installation, many BMPs require maintenance or modification. Conditions such as the amount of water flowing in streams, soil moisture, or the depth of frost—can change quickly, even with one storm. Take into account how conditions may change, and maintain or install additional BMPs as needed. Determine who will be responsible for this work. In many instances, the landowner will want to periodically check and maintain BMPs that have been installed after harvesting is done. This often prevents washouts and a loss of access while protecting water quality at the same time.

4. **CONTROL WATER FLOW**

• **Understand how water moves within and around the harvest area, and decide how water flow will be controlled.** Concentrated flows of water on roads, skid trails, landings, and in drainage systems develops more force and a greater ability to erode soil and carry sediment. It is easiest and most effective to control small volumes of water, before they converge and accumulate into concentrated flows.

• **Slow down runoff and spread it out.** Many BMPs work by directing small amounts of water into areas of undisturbed forest floor where it can be absorbed.

• **Protect the natural movement of water through wetlands.** Wetlands play an important role in the environment by storing water in wet periods and slowly releasing it back into the surrounding ground and streams. Logging roads and trail crossings can affect the flow of water within or through a wetland. This changes how much water the wetland stores, the degree of flooding that occurs, and the rate at which water leaves the wetland. Such impacts can affect the health of the wetland and waterbodies downstream.

5. **MINIMIZE AND STABILIZE EXPOSED SOIL**

Limiting soil disturbance and stabilizing areas where mineral soil is exposed are among the most important BMPs for preventing erosion. These practices are most critical in and around filter areas—forest areas bordering waterbodies. Generally speaking, there are two major objectives:

• **Minimize disturbance of the forest floor, especially in filter areas.** The forest floor absorbs water and filters out sediment and other pollutants. Exposed soil, on the other hand, can erode very rapidly. Most of the sediment that ends up in streams near managed forests comes from exposed soil on roads, landings, and skid trails. Know where the filter areas are and how to protect their capacity to absorb and filter runoff.

• **Stabilize areas of exposed soil within filter areas and in other locations where runoff has the potential to reach filter areas.** Use BMPs during or immediately after the harvest to prevent exposed soil or fill from eroding. These techniques and materials can be used near waterbodies, at stream crossings, road cut-and-fills, ditches, landings, and skid trails. In some situations, you may need to seed and/or plant vegetation in order to stabilize the soil.
6. PROTECT THE INTEGRITY OF WATERBODIES

- **Protect stream channels and banks.** Blocking or altering streams (with slash, for instance) may keep fish from swimming past the blockage. Damaged stream banks erode quickly, causing sedimentation and siltation. By protecting the physical integrity of streams, BMPs prevent these problems.

- **Leave enough shoreland vegetation to maintain water quality.** BMPs maintain the benefits that nearby trees and plants provide waterbodies. Streamside vegetation shades the water, minimizing temperature changes. Live roots stabilize the banks and maintain the soil’s physical and chemical properties. Trees along the banks drop leaf litter and woody debris that supply nutrients and become habitat for plants and animals in the stream. Shoreland vegetation plays an important role in maintaining water quality.

7. HANDLE HAZARDOUS MATERIALS SAFELY

- **Be prepared for any emergency.** Keep an emergency response kit and contact information at the site for fuel, oil, or chemical spills. Remember that fertilizers, herbicides, pesticides, and road chemicals (calcium chloride, road salt, etc.) are hazardous materials, too. Know whom to call for help with unexpected erosion, accidents, or other emergencies. Having a backup plan and being prepared for unexpected and special situations can help avoid or minimize negative impacts to water quality. Industry groups, equipment suppliers, and local and state government agencies all have specialists available to help.

- **Use and store hazardous materials properly.** The best way to avoid accidental spills of hazardous materials is to store and handle them so that the chance of these types of emergencies occurring is minimized.