Surficial Geology

Figure 1. Diagram showing the fan environment remains unclear. It was formed in a large cavity showing that the fan was deposited from adjacent glacial ice. Details of till. This is important evidence that the fan gravel was deposited during note interfingering contact (center) between the fan unit and overlying exposures of a gravelly stratified glacial fan deposit that was overridden terraces adjacent to melting ice, or as outwash in valleys in front of the ice sheet. See accompanying report by Thompson (1999).

Figure 2. Hill section shown in Figure 2. This profile was obtained from a north-south traverse at the western edge of the quadrangle. The 1:24,000 topographic map of the quadrangle was used to select the north-south traverse along a north-south ridge line in the Drummond Falls area, which--in contrast to the prevailing north-south trend of the ridge--is cut by a north-south-trending structural fault. The 7.5-minute quadrangle map supersedes Open-File Map 08-71. The till of the quadrangle is divisible into two distinct intervals. The bedrock surface is topped by a till with an average thickness of about 2 m.

Figure 3. Surficial geology map showing the distribution of surficial deposits in the quadrangle. Black areas are areas where surficial deposits are either completely or partially covered by bedrock exposures. Red areas are areas where surficial deposits are exposed at the surface. White areas are areas where surficial deposits are not present in the quadrangle. The surficial geology map is based on a combination of field observations, aerial photographs, and interpretations of satellite imagery. The surficial geology map is a valuable tool for understanding the distribution and thickness of surficial deposits, which can be used for a variety of applications, such as land use planning, civil engineering, and environmental studies.

Figure 4. Surficial geology map showing the distribution of surficial deposits in the quadrangle. Black areas are areas where surficial deposits are either completely or partially covered by bedrock exposures. Red areas are areas where surficial deposits are exposed at the surface. White areas are areas where surficial deposits are not present in the quadrangle. The surficial geology map is based on a combination of field observations, aerial photographs, and interpretations of satellite imagery. The surficial geology map is a valuable tool for understanding the distribution and thickness of surficial deposits, which can be used for a variety of applications, such as land use planning, civil engineering, and environmental studies.